|
我们对声音最关心的一件事情可能就是声音的大小了。噪音在多小可以忍受?现场放多大音量才最爽?等等。可以说声音的大小直接关系到观众的感觉——没人愿意去听根没有声差不多的音乐。也没有人愿意听吵的耳朵都要聋了的音乐。那么,声音的大小是如何确定的呢? 0 x% t5 @: ?% J' M
声音的大小 ' z* S. B3 F. [6 T4 M+ F% M4 C
0 Y3 j- m7 ?& B0 C6 u可以说声音的上下偏移的大小程度,被称为“振幅”的东西比较间接地影响了声音的大小。不过音量还和频率有不少关系,(专业里面可没有音量这个词,叫做“响度”,呵呵)所以实际上现实中的声音是很难从图上看出振幅的。
5 [* B6 ^3 H3 {" H而且,人对声音大小的“感觉”也并非与振幅成正比,(比如你可以找一个振幅为1单位的sine,再找一个振幅为2单位的sine,听起来声音绝对不是大了一倍。)
2 I6 @9 A5 S1 x( u5 i% V/ k& U) J# [) F" Y: t* d
所以。我们需要一个更加简单,与人的听感相对应的单位来衡量声音的大小。即——分贝。
8 R. z; h" I3 C Y. A' z% K以分贝为单位的电平表 1 D1 |' Q, j7 R& J6 M0 s, D
分贝的定义涉及到了一些数学知识比如指数什么地,那么我们只需要知道,在分贝的世界里面,是没有乘法和除法的,而是只有加减法。也就是说,从没有说:“你这个声音太小了,把分贝数乘2啊!”——这就错了。只能说这个声音小了,咱们再+6分贝吧。之类的。 ! y* O1 D. c6 i+ }- o* o! w6 q; l- E
知道了分贝数的加减法概念之后,我们可以想象,自然界的声音,从细针落地到飞机的轰鸣声,都是可以完美无缺地表达的,无非就是分贝的加减法而已。人们常常在乎声音有多“大”,却忽略了自然界中的声音也是可以无限小的。
# a( R7 S$ W' z自然界声音的大小 " o. G$ \+ X c" W
我们再来看看声音的其他特性:
7 Z- z3 _6 `! ?+ G8 x K- S(2) 频率:不同生物可以听到不动频率范围内的声音 s, P; ^! I3 T# z. e4 s
/ A' P8 q: K4 v' x8 C/ l4 v- q+ P7 o声音都是有频率的,这里的频率指的并不是音乐学上所说的“音高”,而是指谐波构成。不同的谐波从低频到高频按照不同的大小,位置组合起来,便构成了所有的声音。这个声音的最小元素叫做“sine”。其实就是合成器中所说的sin波: 0 K6 s7 K% t7 V2 i; k9 y
! ?4 |/ [( u' k+ e3 J; u9 Fsin波(正弦波) 6 Y" E0 ?1 x& t T0 {
由各种不同频率的sine合起来,便组成了我们听到的这些复杂的波: 9 T. ?; h9 T2 i+ I( q
复杂的波
4 i3 b& P& x5 h2 U1 _' Q4 [也就是说,无论你这个声音再奇怪,再大再长,还是由一些sine构成的。一首交响乐,一个军鼓声,都是由sine构成的。永远逃不掉。
5 U- [/ |) N/ N2 u7 l. n0 X* K: s/ A+ y
那么这个所谓的频率构成有何特性呢?首先要说的就是人能听到的只是从20-20khz这么大的范围,低于或高于这个范围的所有sine我们都是听不到的。其次,同样频率成分相近的两个声音在一起的时候,音量大的那个会把音量小的那个“淹没”掉。比如说我们在全是人说话声的聚会,往往需要大喊才能听到自己的声音,因为人声的频率成分都差不多,别人的容易把你的盖掉,而在一些只有高频或者低频噪音的工厂,也就是说同样音量的噪音,却能避开你说话声音频率成分的地方,只用较小的音量便可以听清了。
% d' q0 S( A) W% t
" N& [( q# D/ n$ m+ `5 y& a这是一个比较有趣的现象,高频的声音似乎和低频的声音完全井水不犯河水,各走各的路。缩混的时候从来没听说三角铁和地鼓打架的。基本就是这个道理呵呵(详见后文关于效果器使用中的EQ部分)
6 _7 t" i7 o. P, q& x" M% q6 s, _# N1 Y! P
好了,讲完了音量和频率构成两个概念(当然还有其他概念,比如反射,方向,等等等等),我们再来看看这两个概念合起来会发生什么事情: 5 N3 M9 O/ s- K
& {' a5 P' l% R b* ?0 |. o1. 同频率的两个声音合体 / P7 M5 ], w2 K5 O/ d! n6 R8 n5 ]
2. 差别很多的两个声音合体
8 g3 Y x6 D8 w* f1 v3 ?7 w你会发现,频率越相近的声音,在合起来之后越能使音量增大,而越是不同频率的声音合体则越不会发生这种事情。
# \: W- m/ E! {' z
( ^8 M: A, Y6 _2 O0 C) l& V如果我们把频率和振幅画成这样一副图: * D, }. g' S1 {# O$ G: j
( U% ~* |; W6 |7 J
低频的贝司和高频的某个乐器 0 k, Q; L- z- o3 y, s/ G. C. E
1 B. h% Z/ K& o7 T3 s) B c
可以看到,越是频率不同,两个声音就越不达界,越可以互相音量都大,但是如果是频率相近的,首先就是音量猛地增加,其次是有一个要把一个盖住,或者两个都不太清楚。 6 O: F V+ F4 D" H
低频的贝司、鼓和高频的某个乐器 / x% J. F/ `2 [2 E B c
0 O( k) n2 X/ a% ]$ n; e那么,假如我们在真实世界里面有两个乐器,都是低频成分多的,当他们同时弹奏的时候,图形就会是这样的:/ D: m9 n6 o% g! D: `
3 R6 E& K. [8 Y; p% H$ s4 P; t4 a) O |
|